Homogeneous and Heterogeneous Reaction and Transformation of Hg and Trace Elements in Combustion Systems

C. Smith, B. Holmen, J. Helble[^]
F. Huggins* and G. Huffman*
U. Connecticut, ^Dartmouth Coll., *U. Kentucky

DOE Review Meeting June 06, 2006

Pollutants from Coal Combustion

- Combustion of fossil and waste fuels – release trace elements
- 11 among 187 HAPs
- Coal -major source of several

HAPs	Estimated US Emissions ¹ (1994) Tons/year
Mercury	51
Beryllium	7.9
Cadmium	3.2
Chromium	62
Lead	62
Arsenic	56
Nickel	52

¹ Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units – Final Report to Congress. United States, Environmental Protection Agency, February 1998. http://www.epa.gov/ttn/oarpg/t3/reports/eurtc1.pdf

Sources of Hg Emissions

Mercury Source	Estimated US Emissions (1994-1995) ¹ Tons/year
Coal Combustion	73
Municipal Waste Combustor	30
Medical Waste Incinerator	16
Other Combustion Sources	19
Total Combustion	138
Manufacturing Sources	16
Miscellaneous sources	1
Area sources	3
Total	158

Clean Air Mercury Rule - 70% 2018 (reconsideration "denied" 5/31/06)

Several states – more stringent rules

- NY recent
- *PA*

¹ *Mercury Report to Congress*, 1997. http://www.epa.gov/ttn/oarpg/t3/reports/volume2.pdf

Objectives

Identify fate of trace metals

 competition between condensation and surface reaction

- Hg heterogeneous pathways

- gas-solid reactions for other elements

Background

- Particle Size Dependence of Arsenic in Fly Ash
 - Surface condensation (for Kn < 1: α 1/d_p², for Kn >1: α 1/d_p)
 - Surface reaction (α 1/d_p)
 - Unvaporized (?)

Super-micron particles

Seames, W. S. *The partitioning of trace elements during pulverized coal combustion.* Ph.D. Dissertation, University of Arizona. 2000.

Approach

- Challenges
 - input/output only
 - scatter in data
 - assumes vaporized species dominant
- Goal develop generalized, temporal understanding
- Measure surface reaction rates as needed
 - Classify standard fly ash
- Build transient model
 - Competing pathways of metal addition
- Challenges
 - Fly ash composition variation
 - Surface reaction rates

Approach: Literature Search

- Vapor pressure dominant compounds
- Hg, Se, As, Cd most volatile

 Existing rxn rate data starting point

Partitioning

- Equilibrium Calculations
 - Arsenic in Ohio coal

Approach: Modeling

- Equilibrium Calculations
 - Selenium in Ohio coal

Model

 Time dependent addition (g metal/s)

- Variables
 - Vaporized metal fraction
 - Surface area factor
 - Quench rate

$$M(d_p) = \frac{6}{\pi d_p^{3} \rho_{ash}} \sum_{t=0}^{t=t_f} [K_R(d_p, t) + K_C(d_p, t)] \delta t$$

Approach: Modeling

- Single Particle Model
 - Time-dependent
- Currently studying
 - Kentucky Coal
 - Arsenic

Addition by reaction

$$K_R = \frac{\pi d_p^2 k_{Ca} P_i}{RT}$$

- Addition by Condensation
 - Continuum Regime

$$K_C = \frac{2\pi d_p D_i (P_i - P_i^{sat})(1 + Kn)}{RT(1 + 1.71Kn + 1.33Kn^2)}$$

Free Molecular Regime

$$K_{C} = \frac{\varphi \pi d_{p}^{2} (P_{i} - P_{i}^{sat}) M W^{\frac{1}{2}}}{(2\pi RT)^{\frac{1}{2}}}$$

Model Inputs from Data

- System
 - Temperature Profile
 - Ash Content(g ash/g coal)
 - Metal Content(g metal/g coal)
 - Coal and Combustion
 Gas flowrates

- Ash Characteristics
 - Particle size distribution
 - Calcium oxide mass fraction

Approach: Modeling

- Experimental data
 - University of Arizona⁴

4 PSI Technology Company. "Transformations of Inorganic Coal Constituents in Combustion Systems." Volume II, November 1992. Contract No. DE-AC22-86PC90751

- Kentucky Coal Port 4, Run 4
- Vaporized arsenic fraction = 60%
- Surface area factor = 1
- Quench Rate = 1000 K/s

 Kentucky Coal Port 4, Run 4

- Vaporized arsenic fraction = 60%
- Surface area factor = 1
- Quench Rate = 1000 K/s

- Kentucky Coal Port 4, Run 4
- Vaporized arsenic fraction = 60%
- Surface area factor = 1
- Quench Rate = 1000 K/s

- Kentucky Coal Port 4, Run 4
- Vaporized arsenic fraction = 60%
- Surface area factor = 1
- Quench Rate = 1000 K/s

Condensation plus "apportionment" indicated; surface reaction?

Varying Vaporized Metal Fraction

 Kentucky Coal Port 4, Run 4

- Surface area factor = 1
- Quench Rate = 1000 K/s

Relative insensitivity to fraction of arsenic vaporized

Varying Surface Area Factor

 Kentucky Coal Port 4, Run 4

- Vaporized metal fraction = 50%
- Quench Rate = 1000 K/s

Additional Asurf increases [As] in submicron fraction as expected

Varying Quench Rate

 Kentucky Coal Port 4, Run 4

- Vaporized metal fraction = 50%
- Surface area factor = 1

Concentrations down the Reactor

Arsenic remaining in the vapor phase (% of total As)

T1	T2	Т3
70%	70%	8.7%

Approach: Laboratory

- Determining Surface Reaction Rates
 - Synthetic fly ash materials
 - Trace metals

- Suspected reaction participant
 - $-\alpha$ -Fe₂O₃
 - $-\gamma$ -Fe₂O₃
 - CaO
- Negative controls
 - Kaolinite
 - Montmorillonite

Characterizing Synthetic Fly Ash

X-ray diffraction

α-Fe₂O₃ after particle size sorting

- Size distribution
 - Optical microscopy
 - SEM microscopy
 - Cascade impaction

BET N₂ Analysis

Particle Size Distribution

Cascade Impaction

Sample	Stages with Visible Particles	Sample Weight in Visible Stages (%)	Particle Diameter Range (μm)	
CaO	6-9	77.6	0.2-2.1	
α -Fe ₂ O ₃	5-9	60.7	0.06-1.6	
γ -Fe ₂ O ₃	2-9	75.5	0.04-2.3	
Kaolinite	5-9	67.0	0.1-2.4	
Montmorillo	nite 7-9	60.5	0.6-2.7	

• BET N₂ Analysis

Sample	Surface area (m²/g)
CaO	11.9
α -Fe $_2$ O $_3$	5.1
γ -Fe ₂ O ₃	7.9
Kaolinite	26.3
Montmorillonite	28.9

Status

- Dynamic model structured and running
- Ability to <u>predict:</u>
 - concentration distributions
 - remaining vapor fraction
 - effect of T gradients
- Examine importance of surface reaction
- Account for non-vaporized fraction
- Questions regarding vaporization, surface reaction rates remain

Future Work

- Surface Reaction Rates for suspected dominant reactions
 - Arsenic with Iron Oxides
 - Are Ca As values reported in literature accurate?
 - If so, is surface reaction feasible?
- Expand model
 - Cover additional coal types
 - Examine additional metals volatile at Tc, lower Psat
 - Hg

Bottled Gas Fixed Bed System

